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Abstract

There are many modeling techniques that can predict the be-

havior of complex systems, such as traffic volumes in regional

transportation systems, with high accuracy. However, pre-

dictive power suffers significantly when non-recurring events,

such as adverse weather, occur in these systems. Therefore,

introducing novel ways to identify and quantify disruptions

can improve projection accuracy and performance. Proac-

tive traffic management requires the ability to predict traffic

conditions. A relatively new mathematical model, the neu-

ral network, offers an attractive approach to modeling unde-

fined, complex, and nonlinear situations. This algorithm is

trained by using both historical data and non-recurring phe-

nomena such as weather. In this study, we test our algorithm

on traffic data collected on four highways and high-resolution

weather data within the Dallas area. The test indicates the

model’s high accuracy and efficiency in predicting short-term

traffic.

1 Introduction

Predicting short-term traffic conditions is a vital com-
ponent of advanced traffic management and informa-
tion systems which aim to influence travel behavior, re-
duce traffic congestion, improve mobility, and enhance
air quality. Previous research on short-term traffic flow
prediction primarily focuses on the normal, or non-
conditions, environment. However, traffic data is highly
nonlinear and varies by time of day and other influential
factors. Weather is one such factor that has a signifi-
cant impact on traffic dynamics. Adverse weather has
been shown to lower free-flow speeds, shift critical den-
sity, decrease flow capacity, and make roads more prone
to congestion. FHWA has presented empirical studies
and statistics about the impact of inclement weather on
roadways [1].

1.1 Traffic flow prediction The drastic increase in
the number of vehicles on the road –also continually in-
creasing trip frequencies and lengths– has resulted in
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heavy traffic congestion in almost all of the major cities
around the world. In the initial periods, reducing traffic
congestion was attempted through infrastructural mod-
ifications. The main drawback of these approaches is
that they are capital intensive. The recent trend is to
apply intelligent strategies for increasing the transporta-
tion systems sustainability, otherwise known as Intel-
ligent Transportation Systems (ITS). In an ITS, it is
essential to predict traffic flow on a short-term basis,
using existing information of present traffic conditions
and historical traffic observations. Short-term traffic
flow forecasting involves predicting traffic volumes in
each next time interval, which is generally in the range
of five minutes to one hour, decided by traffic authorities
considering the corresponding requirements and situa-
tions.

Traffic flow is given by the point per unit time
period random process, consisting of a set of isolated
points collected over time [2]. While modeling such
systems, statistical techniques are traditionally used to
identify the stochasticity in the observed data [3, 4, 5].
However, in general, either non-parametric [5, 6] or
parametric approaches [7, 8, 9, 10, 11, 12, 13] can be
used for traffic flow prediction. Various nonparametric
techniques used for this purpose are linear and nonlinear
regression, historical average algorithms [8], smoothing
techniques [7, 8, 9, 10, 11], and autoregressive linear
processes [5, 9, 13]. Time series modeling techniques,
such as the autoregressive integrated moving average
(ARIMA), have been confirmed as one of the most
accurate methods for predicting traffic flow [14]. These
techniques attempt to identify patterns in historical
data through the decomposition of the trends in long-
term seasonal patterns, followed by extrapolating the
obtained pattern into the next time interval. Since
the traffic flow pattern exhibits strong seasonality due
to peak and off-peak traffic conditions -which repeat
at roughly the same time every day- seasonal ARIMA
(SARIMA) models have proven very useful in predicting
traffic flow behavior [14]. Numerous investigations have
indicated that SARIMA models perform better that
than those based on random walk, linear regression,
and support vector regression (SVR), historical average,
and simple ARIMA [15]. The investigations using
SARIMA models to predict traffic flow reveal that this



Figure 1: Weather condition in DFW, February to
December 2016

technique, though accurate, has a drawback in that it
needs a large amount of historical data for proper model
development. For instance, Smith et al. [16] have used
15-minute traffic flow observations over a period of 45
days to forecast the next day’s traffic flow. Williams
and Hoel [17] used more than two months of traffic
volume observations in their research. Stathopoulos and
Karlaftis used 60, 000 traffic flow observations, which
were aggregated for every three-minute interval over a
period of 106 [18]. Using such large databases to build
the models can be a significant issue in regions where
data availability is lacking. Furthermore, the storage
and maintenance of such historical databases is also a
crucial problem. In addition to these shortcomings, the
major issue in developing AARIMA models for short-
term traffic flow prediction is computational overhead.
Because of the computational intensity, such a process
may not be feasible for real-time applications.

2 Methodology

We assume that weather conditions impact the free-flow
speed, capacity, and critical density of a road. There are
four categories of weather indexes used to express most
weather conditions in the Dallas-Fort Worth (DFW)
area. For this paper, we used high-resolution weather
data, hourly weather data, and other weather indicators
such as visibility. Figure 1 shows the distribution of
weather conditions in 2016. Current weather data along
with short term and long term historical traffic counts
were used to predict traffic counts in the next hour.

3 Deep Learning

Deep learning is the application of artificial neural
networks to learning tasks that contain more than one
hidden layer. Deep learning is part of a broader family
of machine learning methods based on learning data
representations. Deep learning is a useful tool for
identifying patterns. In general, deep learning methods
produced favorable results in applications where the
target function was complex, and the datasets were
large.

A deep learning predictor, denoted by ŷ(x), takes
an input vector x = (x1, , xn) and outputs y via different
layers of abstraction, which employ hierarchical predic-
tors by composing non-linear and semi-affine transfor-
mations. Let xt

t+h be the forecast of traffic counts at
time t + h, given measurements up to time t. Our deep
learning traffic architecture looks as follows:

y(x) := xt
t+h

To model traffic flow data xt = (xt−k, . . . , xt) we
use predictors x given by:

xt = (xt−h, xt−h+1, . . . , xt)

Here xi is the traffic count at time i. In a basic feed-
forward neural network, raw input data are presented to
processing elements in the input layer. The input values
are then assigned weight and passed to the hidden layer.
Elements in the hidden layer are then processed and
passed to the output layer. The output layer processes
the elements and produces the network output.

To develop a neural network model to perform
traffic prediction, the network needs to be trained with
historical examples of input-output data. As part of
the model development process, decisions must be made
about the architecture of the neural network. In neural
networks, we usually train the network using stochastic
or mini-batch gradient descents rather than the entire
dataset. Stochastic and mini-batch gradient descent
use a batch size number of training examples at each
iteration, so at some point, you will have used all the
data for training and can start over from the beginning
of the dataset. One epoch is one complete pass through
the entire training set, meaning multiple iterations of
gradient descent updates until you show all the data to
the neural network and then start again. For this paper,
we conducted some experiments to determine the best
neural network architecture.

We implemented a machine learning model for
this dataset: Keras with Theano backend to build a
sequential neural network for regression. Keras is a
high-level neural networks API, written in Python and
capable of running on top of TensorFlow, CNTK, or



Table 1: Four locations analyzed in the DFW area
Location Physical AADT Missing

ID location data

S126 IH 35 E 215,784 25.21%
S148 IH 35 E 201,267 6.03%
S220 IH 45 82,434 15.34%
S519 IH 30 19,535 3.29%

Theano. Keras was developed with a focus on enabling
fast experimentation. The core data structure of Keras
is a model, a way to organize layers. The simplest type
of model is the Sequential model, which is a linear stack
of layers.

3.1 Overfitting In statistics and machine learning,
one of the most common tasks is to fit a model to a set
of training data with the goal of making reliable predic-
tions on unseen test data. In overfitting, a statistical
model describes random error or noise instead of the
underlying relationship. A model that has been over-
fitted has poor predictive performance, as it overreacts
to minor fluctuations in the training data. Since both
our models have more test accuracy than training ac-
curacy, there doesn’t seem to be any overfitting. The
small number of epochs (10 iterations) also decreases
the likelihood of overfitting. As we increase the num-
ber of epochs beyond a certain threshold, overfitting can
become an issue.

3.2 Data Description To validate the efficiency of
the proposed congestion prediction approach, the model
was applied to data collected from four sites in the
DFW area. The source of the data is Texas Department
of Transportation’s (TxDOT) Traffic Count Database
System (TCDS). Table 1 shows basic information about
the four locations analyzed in this paper.

The collected data are aggregated in 1-hour inter-
vals. In this paper, the traffic count data were collected
on weekdays and weekends for most of the weeks in
2016. The data was collected over the course of 11
months, from February to December of 2016. However,
the data is not consistent within and across months; i.e.,
there are missing days in a month and also some missing
months in the dataset. We accumulated the data into
one file with 14 fields, which include location, date and
time, volume count for the past 3 hours, volume count
for the past 3 weeks on the same time and day, weather
condition, rain, precipitation, and visibility. The total
data points add up to about 30,000 points. We used
46% of the observations as training, and the remainder
was used for testing the deep learning model.

Table 2: Accuracy of neural network prediction models
Epoch size

Batch size 10 40 100

T
ra

in
in

g
d

a
ta M

o
d
el

1 10 83.35% 97.38% 96.79%
25 76.92% 96.32% 97.46%
50 74.65% 86.88% 97.31%

M
o
d
el

2 10 90.94% 94.33% 97.17%
25 70.40% 94.11% 97.01%
50 33.29% 92.96% 95.94%

M
o
d
el

3 10 90.94% 97.54% 97.17%
25 70.40% 94.11% 97.01%
50 33.29% 92.96% 95.94%

T
es

ti
n

g
d

a
ta M

o
d
el

1 10 96.57% 97.49% 97.72%
25 96.07% 97.30% 97.50%
50 95.70% 96.89% 97.46%

M
o
d
el

2 10 96.84% 97.54% 97.78%
25 96.03% 97.39% 97.66%
50 94.61% 97.25% 97.57%

M
o
d
el

3 10 96.84% 94.33% 97.78%
25 96.03% 97.39% 97.66%
50 94.61% 97.25% 97.57%

4 Results

We developed a short-term traffic forecast for four
locations in the DFW area. All four locations are
located at three major interstate highways passing
through Dallas, carrying a high volume of local and
interstate traffic. To develop a predictive model, a
traffic and weather database was developed. The data
are stored in 1-hour intervals since January of 2010. We
combined the data from all locations into one dataset,
which is divided into a training set and the test set.

In general, the neural network model proved to
outperform the traditional methods, demonstrating its
ability to model complex characteristics. We tested our
data set in three different neural network models. Model
1 has only one hidden layer of 8 nodes. Model 2 has two
hidden layers of sizes 8 and 4, and Model 3 has three
hidden layers of sizes 8, 4, and 4. We also changed the
epoch size to see if we could improve accuracy. The
outputs of these three models are presented in Table 2.

Our experiment shows all three models are not
performing well on training set with small epoch size.
However, all three models are producing significant
accuracy in testing data. The best accuracy of training
data has been achieved at batch size 10, epoch size 40 in
the third model. And the second model at batch size 10
and epoch size 100 give the highest accuracy for training
set. Note that low epoch size is computationally fast but
sacrifices accuracy. Usually, as the batch size increases
the computation time will increase too. The trend



Figure 2: Morning peak

shows that increasing epoch size further might provide
even better accuracy, but, as mentioned earlier, there
is a concern of overfitting. Also, the computation time
increases as epoch time increases, so it may not be a
good candidate for real-time traffic prediction. If we
want to settle for a computationally fast and reliable
method, we can invest on Model 1 which has only one
hidden layer, and small batch size 10 and epoch size 40.
This model also has a consistent performance on both
training and testing data set.

Figures 2 and 3 illustrate the performance of our
deep learning model in peak hours in the morning and
afternoon. We also included weather condition and
visibility in these figures to show the effect of weather
condition and visibility on traffic pattern. Deep learning
model tends to overpredict morning peak volumes.
This suggests that we need to include other factors
that influence traffic volume. Afternoon peak volume
forecast is closely fitted actual volume.

5 Conclusion and future work

Various kinds of traffic flow models are used to describe
traffic flow characteristics; however, very few of them
describe the explicit negative impact of adverse weather
on travel speed, flow capacity, critical density, and many
other aspects, such as driving safety. As research has
demonstrated that weather conditions indeed impact
the driving environment and driver behavior, it is
necessary to build a weather-specific prediction model.
We also provided a robust deep learning model to
predict traffic volumes based on short-term and long-
term historical data, as well as high-resolution local
weather data. Future studies may also look into a
combination of weather-specific data and other on-the-

Figure 3: Afternoon peak

ground events, like maintenance and real-time accident
data, and consider their implementation into real-time
traffic control and prediction.
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