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Abstract

In major cities, government agencies increasingly employ

automatic number-plate recognition (ANPR) technology

in law enforcement and traffic control. In the Tyne and

Wear region (UK) the network of ANPR cameras is used

to monitor travel times across sensitive roads. So far, few

works have explored the full potential of number-plate scans

for analysing individual and collective travel patterns. In

this work we present a methodology for deriving trips from

vehicle sightings at fixed camera locations. We identify two

parameters τ and T as essential for identifying implausible

trips and differentiating between multiple trips of the same

vehicle. To demonstrate the applicability of trip data we

apply k-means clustering to trips identified from over 40

million plate scans recorded over fifteen weekdays. Results

show that whilst private and transit travel modes can begin

to be inferred from the resulting clusters, further work needs

to be put into developing a more consistent and integrated

framework for trip identification in ANPR data.

1 Introduction

The volume of traffic on our roads has been growing
steadily for over 25 years, both in terms of the number
of vehicles on the road – increasing by 40.6% in the
UK [5] – and the distances covered – 325.5 billion miles
driven in the UK in the year ending September 2017
which is up nearly 30% in the last 25 years [6]. This
is placing ever more burden on the road infrastructure
along with those who police and manage it. In order to
better understand how we can deal with this increase
in demand we need to better understand how the road
network is being used. By understanding road usage we
can better deal with congestion, handle traffic incidents,
plan road modifications and deal with illegal acts.

In a utopian model we would have full disclosure of all
journeys made by all vehicles on the road infrastructure.
However, this has numerous ethical and technical issues.
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From an ethical standpoint should we be allowed to
know where all vehicles are at any given point in time?
From a technical point of view, although every vehicle
could be fitted with a GPS tracker – costly in its own
right – there would still exist the issue of how we would
collect and stream all of this data for future processing.
Alternatively one can view the problem the other way
around and rather than tracking individual vehicles look
at collecting information by observing vehicles passing
points within the road network. A prime example of
this approach are Automatic Number Plate Recognition
(ANPR) cameras. These cameras are a combination
of digital camera coupled with Artificial Intelligence to
identify number plates within the image and convert
these into strings of characters. ANPR cameras are
normally fixed in location1 able to view all vehicles
passing that location.

For ANPR the problem now becomes that of recovering
as much information about a vehicle’s journey as possible
from the limited number of observations. ANPR cameras
are normally located on major roads and interchanges,
however, this only covers a tiny fraction of the road
network. We can, however, estimate routes between
cameras by understanding the distances between cameras
and the most “sensible” routes between them. This
allows us, given a set of ANPR sightings of the same
vehicle, to produce a “most likely” route for that journey.
It should be noted that we cannot determine the actual
start and end of the journey as these will happen in areas
not covered by ANPR. It should also be noted that for
ethical reasons it is not normal to obtain actual number
plates, but rather the hash of these. Though, for most
situations this will suffice.

Once we have a set of sightings of a vehicle using ANPR,
we now need to convert these into actual journeys. The
first requirement is to separate the stream of sightings of
a vehicle into individual journeys. Although this can’t
be done with certainty we can apply general rules to
distinguish one journey from the next. For example if
two sightings are made from ANPR cameras which are

1Although cameras can be in a vehicle and moved from location
to location.
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connectable by a “sensible” route2 in a time interval
which is “sensible” then these can be determined to
be part of the same journey. However, if the timings
between two sightings is significantly longer than what
would be expected then this would imply that the vehicle
stopped between these two cameras and that the later
sighting is part of a new journey. The process of journey
identification needs to be performed on dirty data which
contains numerous impurities which need to be handled.
These include:

• Number plate miss-reads: Although ANPR
cameras have accuracies of around 99%, miss-reads
are possible. This can lead to sightings being missed
or vehicles being wrongly sighted in locations.

• Timing errors: The time-stamps of sightings
could be erroneous. The minor side of this is
implausible journey times, though, more seriously,
this can lead to reordering the set of cameras on a
particular journey.

• Cloned number plates: For various reasons a
number plate may be cloned and used on a different
vehicle. This can lead to impossible journeys and
journeys that the real vehicle did not make.

Once journeys have been identified from the sightings
we can then progress by using these journeys to identify
higher-order issues within the road network. In this
paper we demonstrate how we can use this journey
information in order to identify the most likely class
each vehicle is a member of. By clustering over such
characteristics as how many journeys are made each
day, average length of journeys, the number of different
ANPR cameras seen in a day and the times when
journeys are made we can cluster vehicles into buses,
taxis, commuters and delivery vehicles.

The rest of this paper is presented as follows. In
Section 2 we discuss related work. Section 3.1 presents
the ANPR data for the Newcastle area. Our process for
identifying individual journeys is defined in Section 3.2,
while methods for addressing issues resulting from poor
camera performance are described in Sections 3.3 and 3.4.
Section 3.5 outlines our clustering approach. We report
results in Section 4 before offering conclusions and future
directions in Section 5.

2 Related Work

The main use of ANPR data for an Urban Traffic
Management and Control Centre (UTMC) is estimating

2Here “sensible” implies that a route between cameras A and

B would not need to go through a third camera C.

average journey times for selected or sensitive links
in the road network. Furthermore, several authors,
notably Enrique Castillo et al. and Andrew Hazelton
et al. have extensively researched how to use number
plate data as an extension to link counts for estimating
origin-destination matrices and link flows [2, 3, 9].
However, very few works have focused on analysing
individual or collective travel patterns from number
plate data, particularly across extended periods of
time. Moreover, there is no consistent conceptual and
analytical framework for transforming number plate
data into a historical sequence of trips for each vehicle.
Finally, we believe that trip data, properly identified
from number plate data, has the potential to unlock
a number of new applications for urban traffic control
and law enforcement. Thus, in section 3.2 we present a
conceptual methodology for grouping multiple camera
observations of the same vehicle into one or several trips
of that vehicle.

Determining the distribution of travel modes is third
of the four fundamental steps in the four-stage model:
trip generation, trip distribution, modal split and traffic
assignment. The four-stage model is the most widely
used traffic modelling methodology for transportation
planning [8]. Previous works have used trip information
derived from different sources of data to identify travel
mode or purpose of trip. More notably, survey data,
floating car data and mobile phone data have been
used [1, 10]. Although number plate data has been used
by Chen et al. (2017) [4] to identify different categories
of trips, the authors do not differentiate between private
or public travel modes and focus instead on categorising
trips by time of occurrence. Hence, in section 3.5 we
apply the k-means clustering algorithm to derived trip
data and based on the results, we discuss the limitations
of proposed methods and that of ANPR data.

3 Methodology

3.1 Tyne and Wear ANPR Data Automatic num-
ber plate recognition (ANPR) cameras are actively em-
ployed in urban traffic environments and play an impor-
tant role in day-to-day intelligent transportation systems.
They can be used by government subsidised entities in
urban traffic management and control; by commissioned
highway agencies in electronic toll collection; or by law
enforcement organisations in detecting speeding vehicles
and validating number plate registrations. The wide
diversity of applications, paired with the large improve-
ments in price-to-performance ratios of ANPR hardware
and software systems, has resulted in increased invest-
ments of ANPR cameras for urban environments [7, 12].
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Figure 1: Overview of a ANPR-based system for traffic
monitoring and control.

In the region of Tyne and Wear, United Kingdom, there
are over 250 active ANPR cameras. Over 1 million license
plate detections are recorded by these cameras every day.
Figure 2 shows the number of daily scans recorded over
a month (February, 2017). Furthermore, every scan is
stored in a central database managed by the Tyne and
Wear UTMC, and used to compute travel times across
particular links of interest in the road network. These
are usually major roads that see high volumes of traffic,
or road segments more prone to traffic jams. Average
journey times can then be conveyed back to the drivers
by the way of Variable Message Signs (VMS) or web
based applications. Figure 1 represents this interaction.

Number plate data, in its essence, is a stream of events,
each representing a vehicle observed by one camera at
a specific point in time. An excerpt of the data can be
found in Table 1. All number plate were anonymised
by the UTMC through a hashing algorithm before the
data was shared. Cameras are uniquely identified by
an integer and timestamps are relative to each camera’s
clock. Clock synchronisation is performed using the
Network Time Protocol (NTP), as the cameras are
connected, through a private network, to a central
server. Therefore, the recorded timestamps can be used
directly if the synchronisation error is negligible. The
following additional information is also captured and
provided by each camera: (i) the clock synchronisation
error (milliseconds); (ii) the camera’s confidence that
the identified number plate is the true number plate
(percentage); (iii) the direction of travel, away or towards
the camera. The confidence in the observation is

Vehicle Camera Timestamp
Clock

Error
Confidence

169239 1031 1454284800.26 0 100
12862943 18 1454284800.97 8 61
16243894 22 1454284801.46 6 86
4817789 52 1454284803.43 13 94
5503486 110 1454284802.19 22 91
15244177 115 1454284802.83 18 87

Table 1: Sample of number plate data. Clock error
is given in milliseconds and confidence as a percentile
value.

especially useful as it helps diagnosing license plate
recognition errors. On the other hand, the direction of
travel is dependent upon the orientation of the camera,
which is not provided. Hence, we chose to ignore the
latter in this work.

3.2 Trip identification Let the ith sighting of vehi-
cle k be defined as the unordered pair:

(3.1) ski = {c, t},

where c uniquely identifies a camera, and t is a scalar
representing a point in time (e.g. a timestamp).

Let an ordered sequence of sightings of vehicle k define
the uth trip of vehicle k :

(3.2) wk
u =

(
sk(1), s

k
(2), . . . , s

k
(n)

)
,

where n is the degree of the trip, i.e. the number of
sightings. Moreover, let the corresponding journey time
sequence, of degree n−1, be defined as the time difference
of consecutive sightings:

(3.3) jtku =
(
tk(2) − t

k
(1), . . . , t

k
(n) − t

k
(n−1)

)
.

We consider a trip of wk
u valid under the following

conditions:

n ≥ 1,(3.4)

τ < jtku(i) < T , ∀i ∈ {0, 1, . . . , n− 1},(3.5)

where τ and T are the lower and upper bound of the ith
element of the journey time sequence.

Condition 3.4 is straightforward and specifies that
every identified trip should have at least one sighting.
Obviously, vehicles can make trips that do not pass
through any ANPR cameras and thus have no associated
sightings: n = 0. However, this work focus on trips that
we can observe and hence we consider that n > 0.
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(a) Total number of scans recorded per day in Tyne and
Wear. There is a clear seasonal effect caused by decreasing
traffic demands at weekends and increasing traffic volume
during weekdays.
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(b) Number of scans recorded per ANPR camera and day
in Tyne and Wear. Inter-camera variability is observed,
as some cameras are located in more traffic intensive
road sections than others. Decommissioned or temporarily
unavailable cameras (due to loss of power, faulty camera,
road closed, etc) can be identified at the bottom.

Figure 2: License plate scans recorded by ANPR cameras during February 2017, in the region of Tyne and Wear,
United Kingdom.

Condition 3.5 defines a minimum and maximum travel
times between consecutive observations. Its purpose is
twofold: (i) first, to allow distinct trips made by the
same vehicle to be differentiated. For instance, given
two consecutive sightings of k three hours apart, we
are likely to want to interpret them as belonging to
different trips of k ; (ii) second, it allows implausible
trips to be identified. For example, an implausible trip
can result from observing k at a given camera and then
a few seconds later at a second camera, several miles
apart. Two explanations are common, either one of
the cameras made a detection error, or there is another
vehicle with a cloned number-plate travelling on the road
network. Evidently, Condition 3.5 is only valid for trips
of degree two sightings or greater. Nevertheless, trips
can easily be differentiated by first sorting sightings by
time of occurrence, then calculating the journey time
sequence for the entire sequence and finally comparing
each element against T. An example of a trip identified
this way can be seen in Figure 4.

The simplest approach to choosing the value of T is to
pick a fixed empirical value, such as 5 or 10 minutes.
However, if the distance between two cameras is greater
than another pair of cameras, then it makes sense that T
is relaxed. Similarly, if there is an anomaly in the road
network, such as a traffic jam, and the routes connecting
the two cameras are affected, then the value of T should
also be adapted. Hence, T should be a function of the
distance between the two cameras (or, more accurately,
of the top n-routes between these) and the distribution
of observed journey times. The same rationale can be
applied to τ . However, we focus on T and leave τ for
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Figure 3: Distribution of trips per degree of trip.

analysis at a later stage. Figure 3 shows how the number
of trips per degree of trip varies by fixing T at different
empirical values.

3.3 Duplicate scannings We need to ensure that
every trip of vehicle k is unique from all other trips of
vehicle k. That is, given W k the set of all valid trips of
k:

W k =
(
wk

(1), w
k
(2), . . . , w

k
(N)

)
,(3.6)

where N is the number of trips of k, then there should
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Vehicle Camera Timestamp Trip Sighting
Journey

Time

Trip

Id

2362920 1014
2017-02-01
00:00:06

1 1 NA 21

2362920 1044
2017-02-01
00:01:28

1 2 82.38 21

2362920 35
2017-02-01
00:02:32

1 3 63.50 21

2362920 32
2017-02-01
00:04:38

1 4 125.95 21

1014

32

Figure 4: Example of a trip of degree 4. On the left side the corresponding data table is shown. The uth trip
of each vehicle is given by the variable Trip, whereas the ith sighting is given by variable Sighting. The variable
JourneyTime gives the travel time from the previous to current sighting. Lastly, the variable TripId represents the
unique sequence of cameras that describes the trip. This allows trips to be grouped and summarised not only in
terms of their origins and destination, but also routes. On the right side, the same trip is plotted on a map. The
circles represent camera locations whereas the lines represent the fastest driving routes between sightings rather
than the true route taken by the vehicle. Even though no routing information is available for each consecutive pair
of sightings, the observed journey times can be compared against the distribution of collective journey times to
rank the set of most likely routes chosen (which can be determined for instance by Stochastic User Equilibrium [3]).

be no two trips containing the same sighting:

sk(u,i) 6= sk(v,j),∀u, v = 1, 2, . . . , N , u 6= v,(3.7)

∀i = 1, 2, . . . , nu ,(3.8)

∀j = 1, 2, . . . , nv

where sk(u,i) is the ith sighting of the uth trip of vehicle
k, and nu is the degree of u.

In fact, ANPR cameras can identify the same vehicle
multiple times in the same pass, if for instance the vehicle
is stopped at a junction or traffic light. Hence, if two
sightings occurred at the same location in a very short
period of time, then there is a strong possibility that
these are duplicate observations. As a simplification, we
can assume that a trip should not contain cycles and that
no camera should appear twice in the same trip. Yet,
this assumption ignores cases where a vehicle is required
to correct its route by passing through cameras that have
already been registered in that trip. Thus, two sightings
of vehicle k are different if they were observed: (i) at
two different points in time at different locations; (ii) or
at the same location with a time interval greater than γ.
Otherwise the two sightings are deemed as duplicates:

( cki 6= ckj ) ∨(3.9)

( cki = ckj ∧ |tki − tkj | < γ ) ⇒ ski 6= skj , i 6= j

where cki and tki are the camera and timestamp of the
ith sighting of vehicle k.

Although the estimation of γ carries similar considera-
tions and consequences as those of estimating T and τ ,
most duplicates can be identified in consecutive sight-
ings of the same camera within the same trip. Even
though a poor estimation of γ also has an impact on
error propagation, this decreases substantially after fil-
tering duplicates according to the heuristic above, due
to the low occurrence of cycles in trips.

3.4 Errors in plate scanning ANPR cameras have
an average accuracy rate of 99.9% or higher. If
we consider that on average 1 to 10 out of 10000
number plate scans are misclassified number-plates then
approximately between 200 to 2000 scans everyday
are incorrect. These errors propagate and lead to
innacuracies in the identification of trips. In fact,
misclassifications affect the trip sequences of two vehicles:
the true passing vehicle and the vehicle erroneously
detected instead. The true vehicle will be missing a
sighting in the correspoding trip sequence vector whereas
the other vehicle’s trip sequence will contain an extra
invalid sighting. The later may be more easily detected
and removed than the former as it may generate a
sighting for a vehicle that is normally seen in a different
part of the country.

Moreover, ANPR cameras may exceptionally fail to
detect passing vehicles. Even though only the passing
vehicle is affected in this case, it’s trip sequence vector is
nonetheless affected. Therefore, due to their impact
in trip identification, it is important to detect and
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Total
Trips

Average
Trips

Average
Degree

Average
Sightings

Average

Distinct

Origins

Average

Distinct

Destinations

Average

Distinct

Routes

Average

First

Hour

Average

Last

Hour

Average

Hour

Difference

Average

Rest

Time

41 3.42 1.25 5.75 2.75 1.00 3.00 15.33 19.25 3.80 3.70
3 1.50 1.00 1.50 1.50 0.00 1.50 14.00 14.50 0.73 0.73
7 2.33 1.33 3.33 2.33 0.67 2.33 11.00 13.00 2.44 2.41
12 2.40 1.10 3.60 2.40 0.60 2.40 14.40 16.40 2.00 1.95

Table 2: Sample of extracted features from trips taken from 15 weekdays of number plate data.

address missing and misclassified scans. We filter
invalid sightings by removing all sightings containing
a confidence value below 85%. However, we do not
address missing scans in this work.

3.5 Clustering vehicles One application of trip data
is to group vehicles together according to similar trip
patterns, namely frequency and diversity of travel. We
can distinguish vehicles based on private and transit
modes of transportation and classes within these, such
as everyday commuters versus sporadic drivers, buses
versus taxis, and other types of vehicles such as lorries
and delivery trucks. Ideally, we would like to build
a model, through supervised learning, that is able to
classify a vehicle from unseen trip data. However, due
to privacy laws, there is no publicly available database
that maps a plate number into one or several of the
categories above. Therefore, we’ve decided to group
vehicles by performing unsupervised learning using the
k-means clustering algorithm. Despite not being able
to perform a rigorous validation or interpretation of the
resulting clusters, we can begin to understand how useful
trip data is to describe vehicles’ travel patterns, given
the limited coverage of the cameras in the road network.

Due to distinctly different traffic behaviour during week-
ends, we only consider trips occurring during weekdays.
Therefore, we used all number plate data collected be-
tween the 6th and 24th of February and excluded data
from the 2 weekends in-between. Furthermore, as men-
tioned in section 3.2, we used fixed empirical values for T.
Table 3 displays the number of trips, average trip degree
and the proportion of trips of degree one, for varying
values of T. The effect of incrementing T on resulting
trips is clear: increased trip degrees and decreased trips
containing just a single sighting. On the other hand, we
did not set a value for τ , but instead handled implausible
trips by filtering out all sightings with confidence below
85%. Duplicates were filtered after identifying consecu-
tive sightings by the same camera occurring within the
same trip. Clock synchronisation errors were provided
in milliseconds with none exceeding 5 seconds. These
were hence ignored.

T Trips Average

Degree

Proportion of Trips

Degree 1

5 min 13,603,759 1.46 0.70
7.5 min 12,394,709 1.60 0.64
10 min 11,690,791 1.69 0.61
15 min 10,823,333 1.83 0.57
20 min 10,305,860 1.92 0.54
30 min 9,653,499 2.04 0.52

Table 3: Overview of trip data for varying values of T.

Transforming trips into features which can be used in
clustering algorithms was a 3-step process: (i) First,
every trip was summarised as a single row of data.
The following information was extracted: degree of
trip, origin, destination, route, start and end times.
(ii) Second, daily trip information was obtained for each
vehicle: number of trips, median of trip degrees, number
of sightings, distinct number of origins destinations,
and routes, hour of first sighting, hour of last sighting
and total rest time between trips. (iii) Finally, daily
information per vehicle was collapsed into a single row
by averaging this information across the 15 days.

Table 2 depicts a sample of the resulting features vector.
A total of 1,034,107 distinct vehicles were detected.
However, because there is a high percentage of trips
containing a single sighting, some of these features were
highly correlated. We therefore, chose to remove three
of the features represented in Table 2: Average Sightings,
Average Distinct Routes and Average Hour Difference,
to avoid the obfuscation of the natural clustering [11].
Furthermore we considered that a trip of degree one has
no destination (which explains values of average distinct
destination below one) and we filtered all instances of
vehicles where the total number of trips is lower than 3,
resulting in 642,006 unique vehicles.

Clustering of vehicles was performed using the Hartigan
and Wong k-means algorithm, for each value of T. The
number of clusters k was varied between 2 and 8 and
executed with a maximum of 200 iterations and 100
different starting states of the algorithm. The Calinski-
Harabasz criterion is used to determine the best value
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of k. It minimises and maximises the within-cluster and
between-cluster sum of squares respectively, resulting in
more natural clusters [11]. The results of trip clustering
are presented and discussed in the next section.

4 Results and Discussion

Table 4 provides a summary of multiple runs of k-means.
For each value of T, the optimal number of clusters is
selected by picking the value of k that maximises the
Calinski-Harabasz criterion. Furthermore, the measures
of inter-cluster (betweeness) and intra-cluster (withiness)
are depicted relative to the corresponding total sum of
squares (total betweeness and total withiness). It is
noteworthy that the best value of k increases inversely
to T. Although a higher value of k seems to suggest
that trips with smaller values of T are better able to
capture the variance of trip data, we have to consider
that varying T affects the average trip degree in the
same direction whilst affecting the total number of trips
in the opposite direction (Table 3).

Table 5 depicts the cluster centres for the combination of
T and k that maximises the Calinski-Harabasz criterion.
These results partially meet our expectations. For
instance, we were expecting to find a relatively small
cluster representing taxis with a high average number
of trips per day, occurring over a variety of origins and
destinations and over a large time frame. Clusters 5, 6
and 7 do indeed fit this profile. What differentiates
cluster 5 from 6 is the particularly high number of
average trips per day. When k is equal to 7 these two
clusters merge into one. To some extent, other categories
fit this profile as well, namely buses, lorries and delivery
trucks. However, we could expect buses to show less
diversity in the number of origins and destination as
these essentially do multiple runs of the same route
throughout the day. Still, this can be explained by the
fact that buses take routes through main and secondary
roads. As most cameras are placed in main roads, the
one long bus trip can be perceived as multiple small trips
as the bus alternates between arterial and main roads.
This is in fact, one of the downsides of ANPR data and
the methodology presented in section 3.2.

On the other hand, we expected to observe a group
representing home to work commuters with the first trip
of the day starting approximately at eight in the morning
and a second trip terminating between five and six in
the evening. Although we observe one or two groups
with those characteristics, these contain a higher average
of trips per day than expected, which may represent
for example work to school trips. However, we observe

T Best k Betweenss
Average

Withinss

Calinski-

Harabasz

5 min 8 0.923 0.125 1,116,962
7.5 min 7 0.904 0.143 1,003,744
10 min 7 0.896 0.143 911,044
15 min 6 0.865 0.167 794,557
20 min 4 0.786 0.250 754,241
30 min 3 0.710 0.333 743,001

Table 4: k-means performance for several values of T.

Cluster Size Average
Trips

Average

Distinct

Origins

Average

First

Hour

Average

Last

Hour

1 157,962 2.45 2.27 11.38 14.93
2 303,513 2.18 2.09 12.53 14.47
3 21,549 6.02 5.00 8.68 17.23
4 108,094 2.99 2.73 9.99 15.86
5 509 33.62 10.42 5.81 19.67
6 1,993 17.99 11.24 6.45 19.09
7 4,971 10.41 7.64 7.97 18.04
8 58,059 4.09 3.62 9.22 16.60

Table 5: Cluster sizes and centres for T = 5 minutes.

at least one big group of trips occurring mostly during
lunch hour. A big contributing factor however is the fact
that a high proportion of trips contains only a single
sighting (Table 3). It may be the case that many of these
drivers choose routes other than those going through
ANPR cameras.

To improve the interpretability of these results, we would
like to gain access to a governmental database that
provides vehicles’ weight, wheelplane, make and category
from the corresponding plate number. Broadly speaking,
vehicle categories are defined relative to the transport of
persons or goods, and sub-categories are given according
to maximum allowed mass. With this information it
would be possible to sort vehicles in the ANPR database
into one of the following classes: Bus, Car, Motorcycle,
Truck, Van. Even though taxis cannot be identified in
this way, taxi companies could be contacted directly to
obtain this data. However, such databases are available
for law enforcement, but not to the public for ethical and
privacy reasons. Additionally, this would require us to
de-anonymize the hashed number plates. Nevertheless,
these results demonstrate that whilst ANPR data is
able to capture some of the travel patterns, a clearer
and more robust assessment of travel patterns is needed.
Furthermore, it is not clear whether this is due to limited
coverage of the ANPR cameras in the road network or
of the methodology used.
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5 Conclusion and Future Work

Most urban cities in the world employ a network of
ANPR cameras that are used for law enforcement as
well as traffic monitoring and control. Number plate
data collected in the Tyne and Wear area is stored and
leveraged by the Urban Traffic and Management Centre
(UTMC) for computing average journey times across a
selection of sensitive roads. However, number plate data
could be used more extensively to identify and study
individual and collective travel patterns. In this paper,
we have presented a set of definitions and constraints
that establish a conceptual foundation for identifying
vehicle trips from number plate detections.

We have also identified two parameters, τ and T as
critical in the discrimination of plausible and implausible
trips. Hence, future work should first and foremost
focus on developing formal methods to estimate these
parameters from observed distributions of travel times
and by applying knowledge about the structure of the
road network. Any errors in trip identification that
occur due to poor estimation and filtering methods
will propagate and be amplified in posterior analysis
done using trip data. Moreover, methods for addressing
issues concerning camera performance, namely wrong
and duplicate scans, should be further developed and
researched.

Once trip data has been computed, a range of interesting
applications are available. This work tries to identify
groups of vehicles by clustering information about
frequency and diversity of travel. By associating a vehicle
with a cluster that represents taxis, or home-to-work
commuters, one can begin estimating trip mode usage
across the city. However, the results presented here could
benefit from extra work and further validation. Namely,
gaining access to a database that maps plate numbers
to vehicle types would not only provide means to better
validate the proposed methodology but also enable the
application of supervised learning instead. Furthermore,
this work can be improved upon by using other data
sources as a baseline for evaluating the reliability of
extracted trips, such as GPS taxi traces.

Finally, future work can focus on using trip data to solve
interesting research problems such as: (i) real-time route
recommendation using probabilistic graphical models;
(ii) detection of abnormal trip patterns for helping law
enforcement in the identification of suspect vehicles or
behaviour; (iii) modelling how drivers make routing
choices in the presence of anomalies in the road network.
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