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Abstract

Station-less bike sharing systems are a fast growing
smart transportation trend today, with more and more
cities around the world implementing them. They are
emerging as a novel tool that can help reduce the burden
on public transport system as well as reduce traffic
congestions in cities. They are also an affordable and
green way to get from point A to point B for daily
commuters. Station-less bike sharing systems are not
constrained to bike stations like traditional bike sharing
systems. By using just an app on the phone, users can
rent and pick up a bike from any location most closest to
them and then return it back at any arbitrary location
at the end of the trip. Station-less bike sharing systems
have also been instrumental in addressing and solving
the commuters last mile problem.

However, along with all the advantages, the station-
less bike sharing systems also pose new sets of chal-
lenges to be addressed and solved. Some of the primary
challenges are identifying regions within the city suffer-
ing from demand shortage of bikes, supply shortage of
bikes and regions with parking problems. In this paper
we propose a multidimensional tensor model to address
these problems. We use Mobike dataset for the city
of Beijing to evaluate our model, and the experimental
results show the superior performance of the proposed
model.

1 Introduction

The world has witnessed a rise in popularity of station-
less bike sharing system in recent years, with many
cities all over the world implementing them. These
station-less bike sharing systems have become especially
popular in metropolitan cities like Beijing as they not
only help ease the pressure of public transportation
systems and help reduce traffic congestion in cities,
but also provide an affordable and green way for daily
commuters to travel from point A to point B. The
station-less bike sharing systems are inherently different

*<>+$Department of Computer Science, Missouri S&T, Rolla,

MO, USA. Email: {dkthe, kl6ph, fuyan}@mst.edu.
TContact Author.

Kunpeng Liu® Yanjie Fu*Jr

from regular bike sharing systems as the bikes are
not tied down to stations. With regular bike sharing
systems, the commuters needs to pick up bikes from a
station closest to them and then at the end drop it off at
a station nearest to the user’s end location. Due to this
kind of system, the regular bike sharing systems fail
to address the commuter’s last mile problem in which
commuters face the problem of being stuck in a place in
between their destination location and the bike station
to justify the effort of picking up and dropping off the
bike. However, with their ability to be station-less, the
station-less bike sharing systems have been successful
in addressing the commuter’s last-mile problem. With
station-less bike sharing systems, commuters don’t have
to face the last mile problem of having to pick up the
bike from a station and then park the bike back in a
station at the end of the trip which may or may not be
close to their original starting or destination location.
Station-less bike sharing system offer commuters the
flexibility of picking up a bike from any location and
then at the end of the trip just park the bike at a
location most convenient to them. The whole system
is managed using an app on the phone. Users can
check for any available bikes near them using the pre-
installed station-less bike app on their phone, the app
displays bikes most nearest them. The user then picks
a bike from the available ones for his/her trip. After
the completion of the trip the user can park the bike
at any point and then lock it, which signifies the end of
the trip. The app records details of the trip like check-
in/out time and the distance traveled based on which
fee will be charged.

Along with all these advantages, due to the distinct
and unique nature of station-less bike sharing systems
where the user gets to pick up and drop off a bike at
any location, they are facing new challenges which need
to be addressed and solved. Three of the primary chal-
lenges are identifying regions within the city suffering
from demand shortage of bikes, supply shortage of bikes
and regions with parking problems. Since a user can
pick up and drop off a station-less bike at any arbitrary
location, the task of identifying regions suffering from
these problems has become even more of a challenge.
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As a result busy streets of cities like Beijing are being
flooded by thousands of bikes parked everywhere which
in turn are adding to the already existing parking and
traffic congestion problems.

Figure 1: Streets of Beijing overflowing with bikes

The main contributions of this paper are

e We propose a multidimensional model to address
some of the major problems being faced by the
station-less bike sharing systems.

e Our proposed framework can successfully identify
problem areas within the city for different periods
of time. Our model also incorporates clustering
model in addition to multiple dimensions.

e In-order to deal with this kind of high amount of
data as well as data sparsity we implement tensor
factorization.

o We evaluate our model over Mobike datasets with
more than 3.2 million trips in the city of Beijing.
The experimental results verify the effectiveness
of the proposed model compared with baseline
models.

2 Data Description

In this section, we provide details about the Mobike
and POI data sets that we have used in developing
our multidimensional tensor model based on Tensor
Factorization. Table 1 shows the statistics of our real-
world data sets.

The Mobike trip dataset was released by Mobike
in the Mobike Big Data Challenge 2017. The dataset
is from the time period of May-10 to May-24 of
2017. It contains details of 3,214,096 trips along

with 7 attributes associated with them. For each
trip the associated attributes include details like the
userid, orderid, trip start_time, trip start_location, trip
end_location, etc. The initial data analysis revealed
that the 84.29% of the entire dataset was made up by
loyal users of Mobike who had regular routes and fixed
patterns of bike usage. Out of the remaining 15.71%
of the data which was made up by new/fickle users,
2.92% of the users had similar bike usage patterns and
routes as the loyal users, and the remaining 12.83%
of the data was generated by new/fickle customers
who did not have the same bike usage patterns and
routes. With these results we were able to conclude
that 87.22% of the data had similar pattern. During
the data analysis we considered users who rented bikes
more 7 times during the entire 14 days time period as
loyal users and the users who rented bikes less than 7
times were categorized as new/fickle customers. The
result from the analysis drove us to the conclusion that
the bike usage data had a consistent pattern and can
be used to our advantage while identifying demand
shortage regions, supply shortage regions and regions
with parking problem.
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Figure 2: Data content identification

The POI data set for the city of Beijing was ob-
tained from www.dianping.com, which is a commer-
cial review and recommendation website. It consists
of 328,668 POI’s divided into 20 different categories like
Hospitals, Malls, Restaurant, theaters, etc. We use the
POI dataset to cross reference it with Mobike data and
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identify high activity regions within the city.

Table 1: Statistics of the Datasets.

Data Sources Attributes Statistics
. . Number of trip records 3,214,096
Mobike Trips Number of users 349,693
Trip start time
Trip start location
Trip end location
Bike id
. . . 05/10/2017 -
Time period of records 05/24/2017
Number of POIs 328,668
POIs Number of POI categories 20

3 Problem Definition and Framework

In this section we provide some key definitions and also
give a brief overview of the proposed framework.

3.1 Problem Definition

We initially state the below definitions to help break
down the problem for better understandability. We then
go on to give a proper definition of the problem as well.
Definition 1: (Trip): A bike trip is defined as T'rip =

{Ti4, Tsioc, TEi0cTt }, where T;q denotes the trip’s unique
order id, Tsjo. consists of the latitude and longitude
point of the trip’s starting location, similarly Tgjec
consists of latitude and longitude point of trip’s ending
location, and T; denotes the trip’ start time.
Definition 2: (Bike Supply Shortage Region): A region
r is defined as a bike supply shortage region S, at time
t if the number of CheckIn bikes are smaller than the
number of CheckOut bikes.

Definition 3: (Bike Demand Shortage Region): A
region 7 is defined as a bike demand shortage region
D,. at time ¢ if the number of CheckIn bikes are greater
than the number of CheckOut bikes.

Definition 4: (Bike check-in Tensors): The three
dimensional bike check-in tensor can be denoted as
X € RI*XJXK The check-in tensor contains data about
the number of bikes checked in at a particular region for
each day and hour.

Definition 5: (Bike check-out Tensors): The three
dimensional bike checkOut tensor can be denoted as
Y € R/X/*K_ " The check-out tensor contains data
about the number of bikes checked out from a particular
region for each day and hour.

Definition 6: (Bike Parking Problem Region): A
region r is defined as a bike parking problem region P,
at time ¢ if the total number of bikes present in regionr
at time ¢ is greater than the predefined threshold Py,.
Problem Definition. Given a dataset consisting
of bike trips along with their origin location, destination
location, trip start time, order id, user id, and POI’s of

a city, our objective is to identify regions of the city with
bike demand/supply shortage and parking problems.

3.2 Brief Overview of the Framework

Figure 4 shows the framework of our proposed model.
It consists of 4 major steps: preliminary data analysis
and clustering model, tensor construction and factoriza-
tion, identification of problem areas and optimization.

During the preliminary data analysis stage we lever-

age the POI data for the city of Beijing along with the
bike check-in/out data from the Mobike dataset and
cross-reference both of them to identify regions of the
city with high activity. Then we construct 2 three di-
mensional tensors, one for bike check-in data and the
other for bike check-out data. Here, regions, days and
hours make up the 3 dimensions of the tensors. This
enables us to capture the check-in/out data of every re-
gion for each hour of each day. In the identification of
problem areas step we use the two constructed tensors
to identify total number of bikes present in each region
at specific times. We then use the resulting tensor to
identify problem areas. Since we are dealing with mul-
tidimensional data the parameters required to be stored
in a tensor can increase exponentially and also to deal
with data sparsity problem we propose using tensor fac-
torization method.

4 Constructing Multidimensional Model

We use context information to construct our multidi-
mensional model.

4.1 Preliminary Data Analysis and Clustering
We use the POI dataset for the city of Beijing to first
identify regions with highest number of POI’s in the ci-

Bl o a
e - ond e - R ™
_ - =~ et

Heat map of bike check-infout data

i

Heat map of POI dataset

© o
O )
°oo?nom C 0o
0%0 o, Ogoo
o g 2 %
©_ o
o o
Ooosgnm:
o
ooooo e o
(=) o Oﬁnm:
o o
oS80 o
° o

Clustering with 500mt radius

2) B 3)

Clustered regions

Figure 3: Clustering model
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Figure 4: Framework of the proposed model

ty. The regions with higher number of POI’s are
considered as high human activity regions. We then also
analyze the bike check-in and check-out data to identify
regions which have high bike activity. We then cross-
reference the high human activity regions with high bike
activity regions which enables us to identify regions with
highest activity in the city of Beijing in terms of POI’s
and bike activity. After identifying the highest activity
regions we implement our clustering model on them to
group the locations within the regions into clusters, with
each cluster having a radius of 500mt radius. Each
cluster contains n number of both POI locations and
bike check-in, check out locations. The whole flow of the
process of data analysis and clustering can be summed
up in 3 steps as shown in Figure 3.

4.2 Tensor Construction

Based on the clustered model we take into account
clustered regions which can also be considered as virtual
stations to construct 2 tensors. One for bike check-in
data and the other for bike check-out data. For both

. Available Data . Missing Data

check-in and check-out tensors we represent each clus-
tered region i1, is....i, as the first dimension. We rep-
resent days ji,jo....Jjn and hours in a day ki, ks....k,
as second and third dimensions. Check-in tensor X is
represented as X € R7*/*K and check-out tensor Y is
represented as Y € RIXIXK

4.3 Tensor Factorization
In-order to account for the missing data and to com-
press the data we implement tensor factorization us-
ing CP decomposition method[I1]. We use the SILRTC
algorithm|[I5] in-order to detect missing values in a ten-
sor. With this method we are not only able to retrieve
the missing data but also will be able to store the data in
its compressed form which can be retrieved later on for
any future operations. The CP decomposition method
factorizes a tensor into sum of a finite number of rank-
one tensors. For example, given a third-order tensor
M € RI**K we can write it as
R
(4.1) M%Zarobrocr
r=1
where R is a positive integer and a, € R!, b, € R’, and
¢, € RE. This can also be written elementwise as

R
o> ab Mgk =~ Z airbjTCk'r‘
%Oo‘s\)\’ ‘?\o&s’\)\’ (4 2 ) ’ r=1
R“%‘::Q R“%”::‘ fori=1,. Ij=1,.Jk=1,.. K
2 =.. ”’ é ... , 4.4 Fusing tensors for problem area identifica-
i (gl
R. .. “" Rn ..~ "” By fusing the two completed tensors we can identify
@..H "’ £ .H "’ demand/supply shortage regions and regions suffering
0%01 0%01 from parking problems. By fixing the two dimensions
’ i of the tensor and performing matrix subtraction opera-
Checkin CheckOut

Figure 5: check-in and check-out tensors

tion we are able to identify regions with demand/supply
shortage problems. Now, in-order to identify regions
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suffering from parking problems we analyze the data
based on the trip start time.
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Figure 6: Bike usage pattern

By doing so, we were able to identify a pattern between
bike usage and particular hours in a day. Figure 6 shows
the pattern. We observed that the bike usage is high
during 7TAM and 8AM in the morning, and during 5PM,
6PM and 7PM in the evening. This is probably because
of the number of people going to work and coming back
from work after a night shift in the morning and people
returning back home after work or people going to watch
a movie or eat at a restaurant after getting off from work
in the evening. This can be true not only for people who
are using bikes to commute but also for people who are
using taxi’s, bus’s and other means of transportation.
We also observe a slight rise in bike usage from 11AM
to 1PM. This might be due to people going out for lunch
during break and people coming in for their afternoon
shift at work. It is safe to assume that during these
hours the probability of a region suffering from traffic
congestion as well as parking problem is at its peak. We
detect regions with parking problems by initially setting
a parking threshold R,;. We set a parking threshold
while taking into consideration the fact that we’re only
analyzing the dataset of mobike and that there are
multiple companies like mobike offering similar services
whose bikes may also be present in the region being
analyzed. We calculate parking threshold for individual
regions depending on the growth rate of bikes parked in
those regions. Given a region r and an initial parking
threshold Pi;;, with number of bikes parked in region r
at hour 0 denoted as 7;hp and number of bikes parked
in region r at hour 23 denoted as r;ho3. We can then

determine parking thresholds of individual regions.
(4.3)

Ript = Piy + {[(r1ho/r1haz)t/?** — 1] x Piy,}
Ropt = Pig, + {[(r2ho/r2ha3)t/?* — 1] x Pig,}
Riape = Py, + {[(r3ho/r3haz)t/** — 1] x Piy,}
Rupt = Pig, + {[(raho/rahas)t/?* — 1] x Pig,}

Rupt = Pign, + {[(rnho/rnha3)/?* — 1] x Piy,}

generic form of the equation can be written as,

Ript = Piy, + {[(riho/rih23)t/?* — 1] x Piy,}

The parking threshold R;,: value differs for differ-
ent regions. The region r is considered as a region
suffering from parking problem P, at time ¢ if the total
number of bikes present in that region are greater than
the predefined threshold. Algorithm 1 gives the details
of the procedure.

Algorithm 1 Supply, Demand and Parking problem

regions detection

Input: CheckIn tensor X, checkOut tensor Y and set

of parking thresholds p for different categories

Output: Identification of demand shortage regions D,.,

supply shortage regions .S, and parking prob-
lem regions P,

Initialize tensors X and Y after fixing any two
dimensionsdy, d; provided both fixed dimensions dy
and dy are same for the two tensors.

if dl, dQOfX == dl, ngfY then

Z=X-Y

if Z; j, > 0 then
| Zijk = Dr

end

else if Z; ; ;, < 0 then
| Zijrx=

end

for p1, p2, p3...pn, do

for f in [1,k] do
if r(Z; ; k) > p then
m(Zijk) = pr
end

end

end
end
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With this we are also able to determine that parking
problem of a region is independent of supply shortage
and demand shortage factor of a region. It is solely
dependent on the predefined threshold and individual
hours of a day.

5 Model Evaluation

We evaluate our model for two criteria. (i) We implement
tensor factorization on different ranks to test which rank
gives the optimal accuracy while keeping the number of
parameters to be stored at an acceptable limit when
the tensor is decompressed. (ii) We test our model
against different methods to examine the accuracy of
the predicted missing values recovered by implementing
tensor factorization. Based on this we determine its
effectiveness.

Root Mean Square Error (RMSE)[2] measures how
much error there is between two data sets. In other
words, it compares a predicted value and an observed
or known value. The formula for calculating RMSE is
as below.

RMSE = \/iz?ﬂ(% - ﬁj)2

It quantifies how different a set of values are. The
smaller an RMSE value, the closer predicted and ob-
served values are.

In-order to find the optimal rank we factorize our
tensors on different ranks and then check the RMSE
error between the original tensor and the recovered ten-
sor. We compare our results with matrix factorization
method.

Table 2: RMSE values for different ranks

Matrix Factorization | Tensor Factorization
Rank | RMSE | Parameters | RMSE | Parameters
1 5.04315 1286 3.16346 988
2 3.54652 2572 2.75363 1976
3 3.47987 3858 2.50851 2964
4 2.61652 5144 2.22143 3952
5 2.57374 6430 2.12987 4940

In the experiment we implement tensor factorization as
well as matrix factorization on the data set while keep-
ing the rank same for both methods. The experimental
results lead us to conclude that tensor factorization not
only provides better accuracy while reconstructing the
original tensor from the factorized tensor, but can also
keep the number of parameters to be stored at minimal
when compared with matrix factorization.

For the second criteria we evaluate our model against

other models to determine its effectiveness. We test
our model against Matrix Factorization and Linear
Regression for different percentage of missing data.

deleted data percentage
20 30 40

10 50

30

25

10
5
o

TF MF LR | TF MF LR | TF MF LR | TF MF LR  TF MF LR

Figure 7: RMSE values of TF, MF and LR for different
missing data percentage

Matrix Factorization is one of the most widely used
method to predict missing values and also to compress
the data. Models based on Matrix Factorization have
received greater exposure, mainly as an unsupervised
learning method for latent variable decomposition and
dimensionality reduction [I2][5]. It is most similar to
tensor factorization method. In MF method, a matrix V
is factorized into two matrices W and H and the missing
values are approximated numerically.

Linear Regression is also one of the most widely
used methods to predict missing values. Its broad
appeal and usefulness results from conceptually logic
process of using an equation to express the relationship
between a variable of interest and a set of related
predictor variables. It uses the relationship between
scalar dependent variables and one or more explanatory
variables to predict missing values[I0].

The main aim of this evaluation is to check which
model can better predict the missing data. We measure
accuracy using RMSE method. In the first case where
there is only 10% of the data is missing, the RMSE value
is considerably low, but as we increase the percentage
of deleted data the RMSE value also increases. In
the final test case where we test against 50% of the
missing data, we can see that RMSE value increases
considerably more. In all the test cases, we observe that
RMSE value of tensor factorization manges to be lower
when compared with values of other methods and based
on this we conclude that our model performs better than
the other two methods. Figure 7 shows the result of our
experiment.
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6 Related Work

Bike sharing systems have attracted a lot of research
interest from the beginning. A number of recent re-
searches have tried to address the problems posed by
stationless bike sharing systems. The following are the
most current research works that are closely related to
our work. In 2013 Chemla et al. [3] proposed the static
re-balancing problem paper, which deals with balanc-
ing Demand/supply of bikes. The paper address the
problem of redistribution of bikes to different location.
It presents efficient algorithms for solving instances of
reasonable size, and contains several theoretical results
related to this problem. Faghih-Imani et al. studies
the decision process involved in identifying destination
locations after picking up a bicycle from a shared-bike
station, in the form of a multinomial logit model[6], The
paper by Chen et al. [4] propose a dynamic cluster based
model to predict over demand of bikes taking into ac-
count the common contextual factors opportunistic con-
textual factors that affect the bike usage pattern. Work
by Yang et al. propose a spatio-temporal bicycle mo-
bility model based on historical bike-sharing data, and
devise a traffic prediction mechanism on a per-station
basis[23]. Zhang et al. introduce a new trip destination
prediction and trip duration inference model on the ba-
sis of analyzing individuals bike usage behaviors on tra-
ditional bike sharing systems[24]. Singla et al. proposed
a incetivizing approach for balancing bike sharing sys-
tems. The authors propose to engage the users them-
selves to solve the imbalance problem in bike sharing
systems by providing them incentives to ride bikes from
station suffering from demand shortage of bikes[21]. Liu
et al [I6] proposed a model for bike re-balancing and
data optimization. Meng et al. in 2011 wrote a paper
in which they proposes a complete methodology for in-
troducing bike-sharing systems. The proposed method-
ology takes into account potential demand for bicycle
use and the willingness to pay of future users for faster
journey times, and also introduces a location model for
fixing the bicycle pick-up and drop-off stations made
with the help of a geographical information system[I7].
Lin and Yang in 2011 study the strategic planning of
public bicycle sharing systems while considering the in-
terests of both users and investors, the proposed model
attempts to determine the number and locations of bike
stations[T4]. Caggiani et al. proposed a flexible fuzzy
decision support system for redistribution process in
traditional bicycle sharing systems is presented with the
main aim to minimize the redistribution costs for bike-
sharing companies, determining the optimal bikes repo-
sitioning flows, distribution patterns and time intervals
between relocation operations, with the objective of a
high level for users satisfaction[I]. Froehlich et al. pro-

posed a model which adopted a Bayesian network to
predict station status based on the current time and cur-
rent available dock number[7]. Kaltenbrunner et al. [§]
proposed a short term prediction of the number of avail-
able bikes in stations via the analysis of cyclic mobility
patterns. It detects temporal and geographic mobil-
ity patterns which are applied to predict the number of
available bikes for any station. The predictions are used
to improve the bicycle program. Li et al. proposed a
hybrid and hierarchical pre- diction model to predict the
number of bikes that will be rent from/returned to each
station cluster in the early future[I3]. Espegren et al.
in 2015 wrote a a paper that considers the static bicycle
repositioning problem (SBRP), which deals with opti-
mally re-balancing bike sharing systems (BSS) overnight
by using service vehicles to move bikes from full stations
to empty stations. A new and improved mathematical
formulation for the SBRP is proposed[5].

Our work is also very closely related to Tensor Fac-
torization. Rendle et al. proposed Factorization ma-
chines that combines the advantages of Support Vec-
tor Machines (SVM) with factorization models[I9]. In
2010 Xiong proposed a temporal collaborative filter-
ing with bayesian probabilistic model using tensor
factorization[22]. The work by Oentaryo develops a
Hierarchical Importance-aware Factorization Machine
(HIFM), which provides an effective generic latent fac-
tor framework that incorporates importance weights
and hierarchical learning[I8]. The work by Karatzoglou
introduces a Collaborative Filtering method based on
Tensor Factorization (TF), with types of context con-
sidered as additional dimensions in the representation of
the data as a tensor[9]. The work by presents the factor-
ization model PITF (Pairwise Interaction Tensor Fac-
torization) which is a special case of the TD model with
linear runtime both for learning and prediction[20].

7 Conclusion

In this paper, we propose a model which combines
a cluster model and a multidimensional tensor based
model to address some of the major problems faced by
station-less bike sharing systems. We use our model to
predict and detect areas with demand/supply shortage
of bikes and areas with parking problems. In-order to
achieve this, we combine Mobike dataset for the city
of Beijing and the POI dataset to build our model.
We first use the POI dataset along with bike check-
in and check-out data to identify regions with high
activity. We then implement clustering model to divide
these high activity regions into virtual stations. Then
we construct our multidimensional tensor based model.
We start construction of our model by building two
separate tensors, one for check-in data and the other
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for check-out data of bikes, then we implement tensor
factorization to predict any missing values within the

data and to compress data.

Final steps consists of

fusing the two tensors which enables us to successfully
identify regions with demand/supply shortage of bikes
and parking problem. The unique perspective of our
model is due to the combination of clustering model
and the multidimensional tensor model. Experimental
results show that effectiveness of our model.
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